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Abstract

Chitosan is of great interest in regenerative medicine because of its plentiful properties, like biocompatibility, biodegradability and non-toxicity. The objective of the 
present study was histopathological and biomechanical survey on effect of methoxatin loaded chitosan conduit on Deep Digital Flexor Tendon (DDFT) healing in rabbit 
models. Eighteen healthy male white New Zealand rabbits were randomized into three groups of six animals each. In CONTROL group the DDF tenotomy was performed 
and the sumps were sutured. In CTN (chitosan) group the DDF tenotomy was performed and the sumps were sutured and CTN conduit was wrapped around the damaged 
area. In CTN/METHO (chitosan/methoxatin) group the procedure was the same as CTN group as well as local administration of 100 μL methoxatin (100 μg/Rabbit) into 
the CTN conduit. The histopathological assessments including infl ammation, angiogenesis and collagen fi bers arrangement, and biomechanical assessments were 
performed after 8 weeks. Histopathological observations showed that the conduit was absorbed and adhesion around the tendon was deceased in CTN and CTN/
METHO groups. There were no noticeable signs of infection and tissue reaction in the granulation tissue in CTN/METHO group compared to other groups (P<0.05). Local 
administration of methoxatin in combination with chitosan conduit could accelerate deep digital fl exor tendon healing via decrease in adhesion around the tendon with no 
signs of excessive tissue reaction or infection in rabbits.
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Introduction

Functional association among the dynamic and the static 
parts of the musculoskeletal system transferring muscle 
contraction to the skeletal system are tendons, hence, ending 
up motion. Accordingly, function and motion are compromised 
in tendon damage ranging from acute traumatic ruptures to 
chronic overuse and degenerative tendinopathy. However, 
still with amended therapeutic approaches including non-
surgical, surgical, and rehabilitation techniques, results are 

not satisfactory because repaired tendon tissue infrequently 
attains functionality the same as pre-dameged condition [1,2]. 
Tendon damages result in extensive morbidity, and ensued 
debility can remain for several months in spite of what is called 
proper treatment [3].

Injuries to tendons may be acute or chronic, and are 
produced by alone or in combination of intrinsic or extrinsic 
causes. In case of acute trauma, extrinsic factors prevail and 
in chronic cases intrinsic reasons also play a crucial role. 
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In chronic tendon injuries there are associations between 
intrinsic and extrinsic factors. It has been demonstrated that in 
two-thirds of athletes with Achilles tendon injuries, intrinsic 
factors like alignment and biomechanical shortcomings play a 
crucial role [3].

Chitosan is a linear polysaccharide and is linked with scar-
less repair of soft tissues and has been demonstrated to prevent 
adhesion formation within tendon repair following surgery 
[4,5]. Chitosan inclines to precipitate in physiologic pH that 
explains its effectiveness. A chitosan solution that does not 
precipitate in physiologic settings was recently produced [6]. 
Therefore, no precipitation allows it to adhere to the healing 
site for enough time to take effect. These properties pave the 
way for intimate contact between chitosan and tendon, hence, 
enabling guided-tissue regeneration and avoiding adhesion 
formation. Other biological mediators like platelet-rich plasma 
are administered as fl uid rather than gel and are therefore 
more prone to diffuse from the repair site, modifying their 
effects. Therefore, chitosan seems to be unique among other 
mediators [7].

The restricted capacity of tendon for self regeneration 
and the overall inadequacies of existing treatment schedules 
have augmented the enthusiasm to develop tissue engineering 
approaches for tendon healing. Recently, one of the specifi c 
attitudes has been adoption of variuos types of scaffold to 
renew functionality of tendons and ligaments. It is important 
to scheme and formulate a appropriate scaffold for application 
in specifi c tissue repair, because it contacts with tissue cells, 
and delivers structural upkeep and regulation for successive 
tissue development. Towards this, more attention has been 
paid to the design of scaffolds for guiding cell behaviors and 
tissue regeneration, and the design of scaffolds should be 
based on knowledge learned from native tissues, such as their 
anatomic structures, compositions and functions [8].

The development of infl ammation normally ends up the 
discharge of biologically active mediators to draw neutrophils, 
leucocytes and monocytes to the area of wound in order to 
invade foreign debris and microorganisms via phagocytosis. 
This progression results in the generation of oxygen-free 
radicals like hydrogen peroxide, superoxide anion, and 
hydroxyl anion, that their excess, leads to tissue injury where 
they devastate the natural antioxidant enzymes of the host like 
catalase, superoxide dismutase, and glutathione peroxidase. 
Hence, antioxidants avoid the free radicals activity and avoid 
cells and tissues injury, and also augment healing of wounds 
with or without infection [9,10].

In tissue damage, free oxygen radicals react with DNA 
and generate 8- hydroxyguanine (8-OHGua) that is DNA 
damaged product. Production of free oxygen radicals takes 
place uninterruptedly in cells and existence of defense systems 
for endogenous antioxidant protects tissues from detrimental 
impacts of free oxygen radicals [11]. It has been demonstrated 
that there are different anti-infl ammatory and antioxidant 
free radical scavengers that bear constructive effects to avoid 
ischemic/reperfusion damages in tissues [12-14]. It has been 
indicated that methoxatin performs like an antioxidant, 

and it is able to prevent lipid peroxidation damage, enhance 
thymidine incorporation into fi broblasts and augment growth 
factors generation [15].

The aim of theour research was to histopathologically 
and biomechanically explore infl uence of methoxatin loaded 
chitosan conduit on deep digital fl exor tendon healing in 
rabbit models. The assessments were based on macroscopic, 
histopathological and biomechanical criteria.

Materials and methods

Preparation and fabrication of chitosan conduit, animal 
grouping and procedures

CTN (85% deacetylated medium molecular weight) was 
supplied from Fluka, Sigma-Aldrich (USA). Acetic acid and 
Glycerol were purchased from Merck (Germany) and Sigma 
Chemical Co. (USA). The aqueous solution (1% V/V) of glacial 
acetic acid was prepared at fi rst, then CTN solution (2% W/V) 
was prepared by adding 2 g CTN to 100 ml acetic acid (1% V/V) 
while stirring on a magnetic stirrer-hot plate, The solution 
was stirred with low heat (at 50°C) for 1 hour. The resultant 
CTN solution was fi ltered through a Whatman No. 3 fi lter paper 
(UK) to remove any un-dissolved particles and to prevent the 
fragility of CTN, glycerol was added in amount of 30% of the 
total solid weight in solution [16,17]. 

The conduit was fabricated according to works of other 
researchrs [18]. The mold with CTN solution was put in a – 
80 ˚C freezer for 12 h. The frozen molds were placed at room 
temperature and after 5 min; the outer layers of frozen molds 
were removed. The frozen solutions were dried in a freeze-
dryer (model Alpha 1-4 LDplus; Martin Christ, Osterode, 
Germany). The main drying temperature was –40 ˚C and the 
main drying pressure was 12 Pa for 15 hr. Then, the scaffolds 
were immersed into 2.00% (w/v) sodium hydroxide solution 
(Merck) and equilibrated for 20 min to exclude the residual 
acetic acid. Scaffolds were cleaned using deionized water until 
the rinsing solution was neutral, and then equilibrated in 0.20 
mol L-1 phosphate buffered saline (pH: 7.40) for half an hour 
and fi nally scaffolds were dried at room temperature for 6 
hr.19,20 The fabricated conduit was 0.20 mm thick and 3.50 ± 
0.50 mm in inner diameter. All of the conduits were sterilized 
with formaldehyde tablets in airtight containers for 24 h.

Forty eight male New Zealand white rabbits, weighing 
2.5-3.0 kg, were included into the present study. The rabbits 
were placed in standard cages and fed with commercial rabbit 
pellet and water freely. All processes were perfomed based on 
the Guide for the Care and Use of Laboratory Animals of the 
National Institutes of Health. The research project received the 
confi rmation of the Institution Ethics Committee. 

The rabbits were divided into three groups of 6 animals 
each, randomly. They were anesthetized intramuscularly using 
xylazine hydrochloride 10 mg/kg (Alfasan, The Netherlands) 
and ketamine hydrochloride 40 mg/kg (Ketaset, Germany). 
The right hind limb of each rabbit was prepped and plantar 
skin incision was made longitudinally and DDF tenotomy was 
performed and tendon stumps were sutured in modifi ed Kessler 
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pattern using 3-0 monofi lament nylon (Ethilon, Ethicon, Inc., 
Somerville, NJ, USA). In CONTROL group, the DDF tenotomy 
was performed and the sumps were sutured. In CTN group the 
DDF tenotomy was performed and the sumps were sutured 
and CTN conduit was wrapped around the damaged area. In 
CTN/METHO group the procedure was the same as CTN group 
as well as local administration of 100 μL Methoxatin (100 μg/
Rabbit) into the CTN conduit. 

Macroscopic assessments

Following 8 week post operation, the animals were 
euthanized using overdose of anesthetic agent (Thiopental 
1.0 g, Biochemie, Austria) macroscopic assessments including 
gliding performance of tendon and formation of adhesions 
were done according on a scoring system explained by other 
investigators (Table 1) [19].

from each group) and fi xed in 10% formalin solution. They 
were then dehydrated and embedded in paraffi n wax, sectioned 
at 5 μm and stained with and stained with Hematoxylin and 
Eosin (H&E) and Masson’s trichrome stains. Images were taken 
using light microscope to assess infl ammation, angiogenesis 
and collagen fi brils arrangement. 

Statistical analysis

Kruskal–Wallis variance analysis were used to evaluate 
differences among groups. Multiple comparison tests were 
adopted to know differences when the P-value from the 
Kruskal–Wallis test statistics was signifi cant statistically. 
SPSS 18 (SPSS Inc., Chicago, IL, USA) was adopted for statistical 
analysis. A p-value < 0.05 was set as statistical signifi cance.

Results

Macroscopic fi ndings

There were no signs of local infection around tendons in all 
experimental groups. The conduit was absorbed in the CTN/
METHO and CTN groups. Remarkable peritendinous adhesions 
were found in the CONTROL group that needed sharp dissection 
for detachments. The adhesion scores in CTN/METHO and CTN 
groups were signifi cantly lower than that of the CONTROL 
group (P=0.001) (Table 2).

Table 1: Macroscopic evaluation criteria for adhesion based on Tang, et al.

Points Adhesion Appearance

Length

0 No adhesion

1 Localized, <10 mm longitudinal

2 10-15 mm

3 Intense, >15 mm

Characteristics

0 No adhesion

1 Loose, elastic and mobile

2 Average thickness and mobile

3 Thick, hard and immobile

Classifi cation

0 No adhesion

1 Mild adhesion

2 Moderate adhesion

3 Advanced stage adhesion

Biomechanical testing

The DDF tendons (three samples from each group) were 
taken and wrapped in saline-soaked gauze. They were instantly 
kept at -20º C until day of biomechanical testing. The suture 
materials were removed before initiation if testing process and 
the samples were thawed at room temperature. We used The 
TA.XTPlus Texture Analyzer mechanical test device (Stable 
Micro Systems, Surrey GU7 1YL, UK). The samples were attached 
on mechanical testing machine jaws. The original length was 
set to 10 mm. A 60 mm/min constant rate was selected for each 
sample to stretch. The load and displacement were sampled 
5 times per second. Each sample was stretched to complete 
tensile failure. Samples were kept wet moist within testing by 
dropping normal saline solution on segments of tendon.

Histological assessments

Following 8 week post operation and after macroscopic 
assessments the tendon samples were taken (three samples 

Table 2: Results of criteria for macroscopic evaluation for adhesion formation. The 
data are expressed as Mean ± SD.

Experimental groups CONTROL CTN CTN/METHO

Criteria scores for adhesion formation 6.4 ± 2.5 3.3 ± 1.7 1.4 ± 0.5*

* P<0.001, Indicates signifi cant diminution in adhesion formation in CTN/METHO 
compared to the CONTROL and CTN groups.
CTN: Chitosan; METHO: Methoxatin

Biomechanical fi ndings

In tensile test, rupture at the repair site of samples was 
selected as the mode of the failure. The mechanical testing 
demonstrate that biomechanical indices including stress, 
strain, stiffness and ultimate load were signifi cantly increased 
in CTN/METHO group compared to those of other groups 
(P=0.001) (Figure 1).

Histological fi ndings

The histopathological fi ndings of the present study 
demonstrated that number of ovoid-shaped tenoblasts, 
infl ammatory cells and newly formed blood vessels were 
signifi cantly decreased in number in CTN/METHO group 
in comparison with those of other groups (P<0.05). In H&E 
staining, there were fi broblasts bearing hyperchromatic and 
elongated nuclei between collagen fi bers. Higher collagen 
bundles densities were observed in CTN/METHO group in 
comparison with those of other experimental groups (P=0.001) 
(Figures 2-4).

Discussion

Findings of tendon handling for repair are not satisfactory 
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in practice. Knowledge on the healing mechanisms are 
adequate, however, in clinical practice little achievements have 
been established, and that is because the recent researches on 
tissue engineering of tendons are largely in preclinical level. 
The objective in management of tendon pathologies, acute 
or chronic, should be as close as to a natural tendon injury 
with analogous characteristics and in this regard degenerated 
tissues are great challenges [18-20].

Infl ammation in tendon drops few days after injury, and 
syntheses of fi broblasts proliferation, extracellular matrix and 
mostly collagen type III after fi ve day. The newly synthetized 
collagen fi brils are arranged in the extracellular matrix in 
a random fashion and after 3-4 weeks are aggregated in 
organized bundles. Diminution in collagen type III contents and 
escalation in collagen type I synthesis are considered as a key 
properties of tendon healing remodeling phase starting within 

two month post injury. In spite of immature and weak nature 
of collagen type III fi bers and their random orientation, they 
are responsible for neotendon stability [20-22]. Furthermore, 
high expression of type I collagens and longitudinal orientation 
of these fi bers are thought to be indispensable to get to the 

Figure 1: Bar graph showing biomechanical characteristics of repaired tendons in 
tested animals. Values are expressed as Mean±SD. *P<0.05 vs. CONTROL and CTN 
groups. CTN: Chitosan.

Figure 2: Bar graph showing number of infl ammatory cells, new vessels and 
fi broblast in repaired tendons in tested animals. Values are expressed as Mean±SD. 
*P<0.05 vs. CONTROL and CTN groups. CTN: Chitosan.

Figure 3: Bar graph showing distance among collagen bundles in repaired tendons 
in tested animals. Values are expressed as Mean±SD. *P<0.05 vs. CONTROL and 
CTN groups. CTN: Chitosan.

Figure 4: Representative micrographs of tendon tissue eight weeks post operation 
in experimental groups stained with H & E (400×). A) CONTROL group showing loose 
connective tissue with a lot of tenoblasts, B) CTN group showing fewer tenoblasts 
and no polymorphonuclear cells infi ltration and C) CTN/METHO group showing 
more dense and organized connective tissue. CTN: Chitosan; METHO: Methoxatin.
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maximum tensile strength and accelerated tendon repair. In 
fact, early augmentation in collagen type I fi bers post-treatment 
lead to early augmentation in wound tensile strength within 
the time in which the tendon would be at the risk of re-injury 
[23-24]. Therefore, the neotendons were evaluated within 
two months. It has been approved that extreme infl ammatory 
response will interfere with the proliferative phase of healing 
and the tensile strength of the wound repair will decline as a 
result of scar formation [25].

Histopathological results of our study showed signifi cant 
reduction in infl ammatory cells was observed in CTN/METHO 
group, indicating benefi cial effect of methoxatin loaded 
chitosan conduit in tendon repair.

Chitosan that is a natural polymer from deacetylation of 
chitin (poly-N-acetylglucosamine), has been extensively 
used as local dressing in wound healing because it bears 
antimicrobial and nontoxic, biocompatible and biodegradable 
characteristics [26]. At the end of the study period, the 
conduits were totally absorbed in CTN/METHO and CTN groups 
indicating biocompatibility and biodegradability of the conduit.

Adhesion formation following trauma to tendon still is 
challenging in practice and no satisfactory preventive measure 
has been established. It could be possible to formulate improved 
approaches to prevent adhesion formation due to advances in 
the understanding of the mechanisms involved [27]. Trauma is 
considered as the most important factor involved in adhesion 
formation is [28]. Key cells in tendon healing are tenocytes 
and tenoblasts. The actin isoform has been identifi ed in 
tendons and ligaments [29]. Tenocytes that express -smooth 
muscle actin are known as myofi broblasts. Stress fi bers (actin 
microfi laments), well-developed cell-stroma attachment sites 
(fi bronexus) and intercellular gap junctions are three essential 
morphological elements that defi ne myofi broblasts [30]. 
Tensile forces are transferred to extracellular matrix network 
by fi bronexus [31]. Extracellular matrix network homeostasis 
in tendons and ligaments is achieved by myofi broblasts that 
are responsible for tendon adhesions formation [32]. Efforts 
have been made to diminish formation of adhesion by usage 
of materials acting as mechanical barriers like polyethylene or 
silicone or by usage of pharmacological agents like ibuprofen 
and indomethacin, however no simple method is widely 
adopted [33-35].

Other investigators showed that chitosan avoids 
proliferation in sheath cells of tendon and production of 
collagen [36-37]. Chitosan prevents survival of fi broblasts 
that may be one of the explanations for the augmentation of 
gliding of tendon. The adhesion formation inhibits the gliding 
function of tendon and therefore, limits the range of motion of 
affected limb [37]. In our fi ndings there was no peritendinous 
adhesions in CTN/METHO and CTN groups indicating that 
tendon gliding was achieved in the injured tendons. 

The collagen fi bers are considered as the leading structural 
components of tendon in charge of its mechanical strength 
[38-39]. The fi ndings of biomechanical indices in the present 
study demonstrated higher tensile loads compared to CONTROL 

group. Signifi cant augmentation in stress, strain, stiffness 
and ultimate load in CTN/METHO showed that Methoxatin 
administration ended up additional collagen deposition and 
remodeling. 

Conclusion

Local administration of methoxatin loaded conduit 
improved tendon healing in rabbits. It could be concluded that 
use of the chitosan conduit could be of clinical benefi t due to 
reduced peritendinous adhesion formation around injured site 
of tendon during repairing period and also the conduit could 
be used as a carrier for drug delivery to improve and accelerate 
tendon healing. 
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