Abstract

    Open Access Research Article Article ID: AUR-7-144

    Biogenesis of Melia Azedarach silver nanoparticles using leaves and fruits in breast and ovarian cancer cell lines

    Kousalya Lavudi, Rekha Rani Kokkanti, Srinivas Patnaik and Josthna Penchalaneni*

    Folk medicine has been considered one of the novel remedies for treating cancers. Women's cancers are increasing worldwide, and disease recurrence has been a major threat all over the world. Our current study focused on the formation of silver nanoparticles (AgNPs) by organic methods and their chemo-preventive capacity against the breast (MCF-7) and ovarian cancer (PA-1) cell lines from humans by employing MTT, Flow cytometry, and migration assays. Plant extracts in organic nanoparticle production have become more common in recent years due to their benefits, including affordability, effectiveness, simplicity and briefness. Melia azedarach leaf and fruit methanolic extracts were used to successfully create silver nanoparticles simultaneously to evaluate the potency and efficacy of the extracts. Characterization studies were performed using synthesized M. azedarach silver nanoparticles (MA-AgNPs). A typical SPR peak was discovered ranging from 400 nm (leaf) and 427 nm (fruit) using absorption spectroscopy, with an average particle size of 92.5 nm (leaf) and 124.1 (fruit) nm. The zeta potential for Melia leaves and fruits was found to be -20.9 and -31.2 mV for the extracts. The relevant functional groups for the capping agent found in the extracts and silver nanoparticles formed as a result of the reduction of silver nitrate were identified using Fourier transform infrared spectroscopy (FTIR). Antimicrobial activity against Escherichia coli, Bacillus aureus, Staphylococcus aureus, and Klebsiella pneumonia would be useful in new antimicrobial medications being developed. MCF-7 and PA-1 cell lines were found to be more susceptible to the cytotoxic action of the biosynthesized nanoparticles. The silver nanoparticles that were synthesized exhibited extremely positive anti-cancer activity. 

    Keywords:

    Published on: May 2, 2023 Pages: 8-16

    Full Text PDF Full Text HTML DOI: 10.17352/aur.000044
    CrossMark Publons Harvard Library HOLLIS Search IT Semantic Scholar Get Citation Base Search Scilit OAI-PMH ResearchGate Academic Microsoft GrowKudos Universite de Paris UW Libraries SJSU King Library SJSU King Library NUS Library McGill DET KGL BIBLiOTEK JCU Discovery Universidad De Lima WorldCat VU on WorldCat

    Indexing/Archiving

    Pinterest on AUR